Dense Point Prediction: A Simple Baseline for Crowd Counting and Localization

04/26/2021
by   Yi Wang, et al.
0

In this paper, we propose a simple yet effective crowd counting and localization network named SCALNet. Unlike most existing works that separate the counting and localization tasks, we consider those tasks as a pixel-wise dense prediction problem and integrate them into an end-to-end framework. Specifically, for crowd counting, we adopt a counting head supervised by the Mean Square Error (MSE) loss. For crowd localization, the key insight is to recognize the keypoint of people, i.e., the center point of heads. We propose a localization head to distinguish dense crowds trained by two loss functions, i.e., Negative-Suppressed Focal (NSF) loss and False-Positive (FP) loss, which balances the positive/negative examples and handles the false-positive predictions. Experiments on the recent and large-scale benchmark, NWPU-Crowd, show that our approach outperforms the state-of-the-art methods by more than 5 and 10 code is publicly available at https://github.com/WangyiNTU/SCALNet.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset