Designing Multi-Stage Coupled Convex Programming with Data-Driven McCormick Envelope Relaxations for Motion Planning

09/14/2021
by   Xuan Lin, et al.
0

For multi-limbed robots, motion planning with posture and force constraints tends to be a difficult optimization problem due to nonlinearities, which also present extended solve times. We propose a multi-stage optimization framework with data-driven inter-stage coupling constraints to address the nonlinearity. Both clustering and evolutionary approaches to find the McCormick envelope relaxations are used to find the problem-specific parameters. The learned constraints are then used in the prior stages, which provides advanced knowledge of the following stages. This leads to improved solve times and interpretability of the results. The planner is validated through multiple walking and climbing tasks on a 10 kg hexapod robot.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro