Detecting People in Artwork with CNNs

10/27/2016
by   Nicholas Westlake, et al.
0

CNNs have massively improved performance in object detection in photographs. However research into object detection in artwork remains limited. We show state-of-the-art performance on a challenging dataset, People-Art, which contains people from photos, cartoons and 41 different artwork movements. We achieve this high performance by fine-tuning a CNN for this task, thus also demonstrating that training CNNs on photos results in overfitting for photos: only the first three or four layers transfer from photos to artwork. Although the CNN's performance is the highest yet, it remains less than 60% AP, suggesting further work is needed for the cross-depiction problem. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-46604-0_57

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset