Digital Asset Valuation: A Study on Domain Names, Email Addresses, and NFTs

10/06/2022
by   Kai Sun, et al.
0

Existing works on valuing digital assets on the Internet typically focus on a single asset class. To promote the development of automated valuation techniques, preferably those that are generally applicable to multiple asset classes, we construct DASH, the first Digital Asset Sales History dataset that features multiple digital asset classes spanning from classical to blockchain-based ones. Consisting of 280K transactions of domain names (DASH_DN), email addresses (DASH_EA), and non-fungible token (NFT)-based identifiers (DASH_NFT), such as Ethereum Name Service names, DASH advances the field in several aspects: the subsets DASH_DN, DASH_EA, and DASH_NFT are the largest freely accessible domain name transaction dataset, the only publicly available email address transaction dataset, and the first NFT transaction dataset that focuses on identifiers, respectively. We build strong conventional feature-based models as the baselines for DASH. We next explore deep learning models based on fine-tuning pre-trained language models, which have not yet been explored for digital asset valuation in the previous literature. We find that the vanilla fine-tuned model already performs reasonably well, outperforming all but the best-performing baselines. We further propose improvements to make the model more aware of the time sensitivity of transactions and the popularity of assets. Experimental results show that our improved model consistently outperforms all the other models across all asset classes on DASH.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset