Dimension-free Information Concentration via Exp-Concavity

02/26/2018
by   Ya-Ping Hsieh, et al.
0

Information concentration of probability measures have important implications in learning theory. Recently, it is discovered that the information content of a log-concave distribution concentrates around their differential entropy, albeit with an unpleasant dependence on the ambient dimension. In this work, we prove that if the potentials of the log-concave distribution are exp-concave, which is a central notion for fast rates in online and statistical learning, then the concentration of information can be further improved to depend only on the exp-concavity parameter, and hence, it can be dimension independent. Central to our proof is a novel yet simple application of the variance Brascamp-Lieb inequality. In the context of learning theory, our concentration-of-information result immediately implies high-probability results to many of the previous bounds that only hold in expectation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset