Discovering Customer-Service Dialog System with Semi-Supervised Learning and Coarse-to-Fine Intent Detection

12/23/2022
by   Zhitong Yang, et al.
0

Task-oriented dialog(TOD) aims to assist users in achieving specific goals through multi-turn conversation. Recently, good results have been obtained based on large pre-trained models. However, the labeled-data scarcity hinders the efficient development of TOD systems at scale. In this work, we constructed a weakly supervised dataset based on a teacher/student paradigm that leverages a large collection of unlabelled dialogues. Furthermore, we built a modular dialogue system and integrated coarse-to-fine grained classification for user intent detection. Experiments show that our method can reach the dialog goal with a higher success rate and generate more coherent responses.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset