Discrete quantum harmonic oscillator and Kravchuk transform

12/06/2022
by   Quentin Chauleur, et al.
0

We consider a particular discretization of the harmonic oscillator which admits an orthogonal basis of eigenfunctions called Kravchuk functions possessing appealing properties from the numerical point of view. We analytically prove the almost second-order convergence of these discrete functions towards Hermite functions, uniformly for large numbers of modes. We then describe an efficient way to simulate these eigenfunctions and the corresponding transformation. We finally show some numerical experiments corroborating our different results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset