Disentangled Implicit Shape and Pose Learning for Scalable 6D Pose Estimation

07/27/2021
by   Yilin Wen, et al.
0

6D pose estimation of rigid objects from a single RGB image has seen tremendous improvements recently by using deep learning to combat complex real-world variations, but a majority of methods build models on the per-object level, failing to scale to multiple objects simultaneously. In this paper, we present a novel approach for scalable 6D pose estimation, by self-supervised learning on synthetic data of multiple objects using a single autoencoder. To handle multiple objects and generalize to unseen objects, we disentangle the latent object shape and pose representations, so that the latent shape space models shape similarities, and the latent pose code is used for rotation retrieval by comparison with canonical rotations. To encourage shape space construction, we apply contrastive metric learning and enable the processing of unseen objects by referring to similar training objects. The different symmetries across objects induce inconsistent latent pose spaces, which we capture with a conditioned block producing shape-dependent pose codebooks by re-entangling shape and pose representations. We test our method on two multi-object benchmarks with real data, T-LESS and NOCS REAL275, and show it outperforms existing RGB-based methods in terms of pose estimation accuracy and generalization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset