DisSent: Sentence Representation Learning from Explicit Discourse Relations

10/12/2017
by   Allen Nie, et al.
0

Sentence vectors represent an appealing approach to meaning: learn an embedding that encompasses the meaning of a sentence in a single vector, that can be used for a variety of semantic tasks. Existing models for learning sentence embeddings either require extensive computational resources to train on large corpora, or are trained on costly, manually curated datasets of sentence relations. We observe that humans naturally annotate the relations between their sentences with discourse markers like "but" and "because". These words are deeply linked to the meanings of the sentences they connect. Using this natural signal, we automatically collect a classification dataset from unannotated text. Training a model to predict these discourse markers yields high quality sentence embeddings. Our model captures complementary information to existing models and achieves comparable generalization performance to state of the art models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset