Distributed Cooperative Decision Making in Multi-agent Multi-armed Bandits

03/03/2020
by   Peter Landgren, et al.
0

We study a distributed decision-making problem in which multiple agents face the same multi-armed bandit (MAB), and each agent makes sequential choices among arms to maximize its own individual reward. The agents cooperate by sharing their estimates over a fixed communication graph. We consider an unconstrained reward model in which two or more agents can choose the same arm and collect independent rewards. And we consider a constrained reward model in which agents that choose the same arm at the same time receive no reward. We design a dynamic, consensus-based, distributed estimation algorithm for cooperative estimation of mean rewards at each arm. We leverage the estimates from this algorithm to develop two distributed algorithms: coop-UCB2 and coop-UCB2-selective-learning, for the unconstrained and constrained reward models, respectively. We show that both algorithms achieve group performance close to the performance of a centralized fusion center. Further, we investigate the influence of the communication graph structure on performance. We propose a novel graph explore-exploit index that predicts the relative performance of groups in terms of the communication graph, and we propose a novel nodal explore-exploit centrality index that predicts the relative performance of agents in terms of the agent locations in the communication graph.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset