Distributed Link Sparsification for Scalable Scheduling Using Graph Neural Networks

03/27/2022
by   Zhongyuan Zhao, et al.
0

Distributed scheduling algorithms for throughput or utility maximization in dense wireless multi-hop networks can have overwhelmingly high overhead, causing increased congestion, energy consumption, radio footprint, and security vulnerability. For wireless networks with dense connectivity, we propose a distributed scheme for link sparsification with graph convolutional networks (GCNs), which can reduce the scheduling overhead while keeping most of the network capacity. In a nutshell, a trainable GCN module generates node embeddings as topology-aware and reusable parameters for a local decision mechanism, based on which a link can withdraw itself from the scheduling contention if it is not likely to win. In medium-sized wireless networks, our proposed sparse scheduler beats classical threshold-based sparsification policies by retaining almost 70% of the total capacity achieved by a distributed greedy max-weight scheduler with 0.4% of the point-to-point message complexity and 2.6% of the average number of interfering neighbors per link.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro