Distributed Reinforcement Learning in Multi-Agent Networked Systems

06/11/2020
by   Yiheng Lin, et al.
0

We study distributed reinforcement learning (RL) for a network of agents. The objective is to find localized policies that maximize the (discounted) global reward. In general, scalability is a challenge in this setting because the size of the global state/action space can be exponential in the number of agents. Scalable algorithms are only known in cases where dependencies are local, e.g., between neighbors. In this work, we propose a Scalable Actor Critic framework that applies in settings where the dependencies are non-local and provide a finite-time error bound that shows how the convergence rate depends on the depth of the dependencies in the network. Additionally, as a byproduct of our analysis, we obtain novel finite-time convergence results for a general stochastic approximation scheme and for temporal difference learning with state aggregation that apply beyond the setting of RL in networked systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset