Domain Adaptation under Missingness Shift

11/03/2022
by   Helen Zhou, et al.
0

Rates of missing data often depend on record-keeping policies and thus may change across times and locations, even when the underlying features are comparatively stable. In this paper, we introduce the problem of Domain Adaptation under Missingness Shift (DAMS). Here, (labeled) source data and (unlabeled) target data would be exchangeable but for different missing data mechanisms. We show that when missing data indicators are available, DAMS can reduce to covariate shift. Focusing on the setting where missing data indicators are absent, we establish the following theoretical results for underreporting completely at random: (i) covariate shift is violated (adaptation is required); (ii) the optimal source predictor can perform worse on the target domain than a constant one; (iii) the optimal target predictor can be identified, even when the missingness rates themselves are not; and (iv) for linear models, a simple analytic adjustment yields consistent estimates of the optimal target parameters. In experiments on synthetic and semi-synthetic data, we demonstrate the promise of our methods when assumptions hold. Finally, we discuss a rich family of future extensions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset