Double-Loop Unadjusted Langevin Algorithm

07/02/2020
by   Paul Rolland, et al.
0

A well-known first-order method for sampling from log-concave probability distributions is the Unadjusted Langevin Algorithm (ULA). This work proposes a new annealing step-size schedule for ULA, which allows to prove new convergence guarantees for sampling from a smooth log-concave distribution, which are not covered by existing state-of-the-art convergence guarantees. To establish this result, we derive a new theoretical bound that relates the Wasserstein distance to total variation distance between any two log-concave distributions that complements the reach of Talagrand T2 inequality. Moreover, applying this new step size schedule to an existing constrained sampling algorithm, we show state-of-the-art convergence rates for sampling from a constrained log-concave distribution, as well as improved dimension dependence.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro