Dynamic Character Graph via Online Face Clustering for Movie Analysis
An effective approach to automated movie content analysis involves building a network (graph) of its characters. Existing work usually builds a static character graph to summarize the content using metadata, scripts or manual annotations. We propose an unsupervised approach to building a dynamic character graph that captures the temporal evolution of character interaction. We refer to this as the character interaction graph(CIG). Our approach has two components:(i) an online face clustering algorithm that discovers the characters in the video stream as they appear, and (ii) simultaneous creation of a CIG using the temporal dynamics of the resulting clusters. We demonstrate the usefulness of the CIG for two movie analysis tasks: narrative structure (acts) segmentation, and major character retrieval. Our evaluation on full-length movies containing more than 5000 face tracks shows that the proposed approach achieves superior performance for both the tasks.
READ FULL TEXT