Dynamic mode decomposition as an analysis tool for time-dependent partial differential equations
The time-dependent fields obtained by solving partial differential equations in two and more dimensions quickly overwhelm the analytical capabilities of the human brain. A meaningful insight into the temporal behaviour can be obtained by using scalar reductions, which, however, come with a loss of spatial detail. Dynamic Mode Decomposition is a data-driven analysis method that solves this problem by identifying oscillating spatial structures and their corresponding frequencies. This paper presents the algorithm and provides a physical interpretation of the results by applying the decomposition method to a series of increasingly complex examples.
READ FULL TEXT