Dynamic Sequential Graph Learning for Click-Through Rate Prediction
Click-through rate prediction plays an important role in the field of recommender system and many other applications. Existing methods mainly extract user interests from user historical behaviors. However, behavioral sequences only contain users' directly interacted items, which are limited by the system's exposure, thus they are often not rich enough to reflect all the potential interests. In this paper, we propose a novel method, named Dynamic Sequential Graph Learning (DSGL), to enhance users or items' representations by utilizing collaborative information from the local sub-graphs associated with users or items. Specifically, we design the Dynamic Sequential Graph (DSG), i.e., a lightweight ego subgraph with timestamps induced from historical interactions. At every scoring moment, we construct DSGs for the target user and the candidate item respectively. Based on the DSGs, we perform graph convolutional operations iteratively in a bottom-up manner to obtain the final representations of the target user and the candidate item. As for the graph convolution, we design a Time-aware Sequential Encoding Layer that leverages the interaction time information as well as temporal dependencies to learn evolutionary user and item dynamics. Besides, we propose a Target-Preference Dual Attention Layer, composed of a preference-aware attention module and a target-aware attention module, to automatically search for parts of behaviors that are relevant to the target and alleviate the noise from unreliable neighbors. Results on real-world CTR prediction benchmarks demonstrate the improvements brought by DSGL.
READ FULL TEXT