Dynamic Survival Analysis for non-Markovian Epidemic Models

02/21/2022
by   Francesco Di Lauro, et al.
0

We present a new method for analyzing stochastic epidemic models under minimal assumptions. The method, dubbed DSA, is based on a simple yet powerful observation, namely that population-level mean-field trajectories described by a system of PDE may also approximate individual-level times of infection and recovery. This idea gives rise to a certain non-Markovian agent-based model and provides an agent-level likelihood function for a random sample of infection and/or recovery times. Extensive numerical analyses on both synthetic and real epidemic data from the FMD in the United Kingdom and the COVID-19 in India show good accuracy and confirm method's versatility in likelihood-based parameter estimation. The accompanying software package gives prospective users a practical tool for modeling, analyzing and interpreting epidemic data with the help of the DSA approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset