Dynamic Trajectory Model for Analysis of Traffic States using DPMM

Appropriate modeling of a surveillance scene is essential while analyzing and detecting anomalies in road traffic. Learning usual paths can provide much insight into road traffic situation and to identify abnormal routes taken by commuters/vehicles in a traffic scene. If usual traffic paths are learned in a nonparametric way, manual effort of marking the roads can be avoided. We propose an unsupervised and nonparametric method to learn frequently used paths from the tracks of moving objects in Θ(kn) time, where k is the number of paths and n represents the number of tracks. In the proposed method, temporal correlation of the moving objects is taken into consideration to make the clustering meaningful using Temporally Incremental Gravity Model-Dynamic Trajectory Model (TIGM-DTM). In addition, the scene learning is based on distance, thus making it realistically intuitive in estimating the model parameters. Experimental validation reveals that the proposed method can learn a scene quickly without knowing the number of paths (k). We have compared the results with mean shift and DBSCAN. Further, we extend the model to represent states of a scene that can be used for taking timely actions. We have applied the model to understand its effectiveness in other domain.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset