Edge-Guided Occlusion Fading Reduction for a Light-Weighted Self-Supervised Monocular Depth Estimation

11/26/2019
by   Kuo-Shiuan Peng, et al.
13

Self-supervised monocular depth estimation methods generally suffer the occlusion fading issue due to the lack of supervision by the per pixel ground truth. Although a post-processing method was proposed by Godard et. al. to reduce the occlusion fading, the compensated results have a severe halo effect. In this paper, we propose a novel Edge-Guided post-processing to reduce the occlusion fading issue for self-supervised monocular depth estimation. We further introduce Atrous Spatial Pyramid Pooling (ASPP) into the network to reduce the computational costs and improve the inference performance. The proposed ASPP-based network is lighter, faster, and better than current commonly used depth estimation networks. This light-weight network only needs 8.1 million parameters and can achieve up to 40 frames per second for 256×512 input in the inference stage using a single nVIDIA GTX1080 GPU. The proposed network also outperforms the current state-of-the-art on the KITTI benchmarks. The ASPP-based network and Edge-Guided post-processing produce better results either quantitatively and qualitatively than the competitors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro