Effective Token Graph Modeling using a Novel Labeling Strategy for Structured Sentiment Analysis

by   Wenxuan Shi, et al.

The state-of-the-art model for structured sentiment analysis casts the task as a dependency parsing problem, which has some limitations: (1) The label proportions for span prediction and span relation prediction are imbalanced. (2) The span lengths of sentiment tuple components may be very large in this task, which will further exacerbate the imbalance problem. (3) Two nodes in a dependency graph cannot have multiple arcs, therefore some overlapped sentiment tuples cannot be recognized. In this work, we propose nichetargeting solutions for these issues. First, we introduce a novel labeling strategy, which contains two sets of token pair labels, namely essential label set and whole label set. The essential label set consists of the basic labels for this task, which are relatively balanced and applied in the prediction layer. The whole label set includes rich labels to help our model capture various token relations, which are applied in the hidden layer to softly influence our model. Moreover, we also propose an effective model to well collaborate with our labeling strategy, which is equipped with the graph attention networks to iteratively refine token representations, and the adaptive multi-label classifier to dynamically predict multiple relations between token pairs. We perform extensive experiments on 5 benchmark datasets in four languages. Experimental results show that our model outperforms previous SOTA models by a large margin.


page 1

page 2

page 3

page 4


Structured Sentiment Analysis as Dependency Graph Parsing

Structured sentiment analysis attempts to extract full opinion tuples fr...

Boosting Span-based Joint Entity and Relation Extraction via Squence Tagging Mechanism

Span-based joint extraction simultaneously conducts named entity recogni...

Unifying Token and Span Level Supervisions for Few-Shot Sequence Labeling

Few-shot sequence labeling aims to identify novel classes based on only ...

Sparse Fuzzy Attention for Structured Sentiment Analysis

Attention scorers have achieved success in parsing tasks like semantic a...

GRACE: Gradient Harmonized and Cascaded Labeling for Aspect-based Sentiment Analysis

In this paper, we focus on the imbalance issue, which is rarely studied ...

Multi-Label Sentiment Analysis on 100 Languages with Dynamic Weighting for Label Imbalance

We investigate cross-lingual sentiment analysis, which has attracted sig...

ρ-hot Lexicon Embedding-based Two-level LSTM for Sentiment Analysis

Sentiment analysis is a key component in various text mining application...

Please sign up or login with your details

Forgot password? Click here to reset