Effects of Word-frequency based Pre- and Post- Processings for Audio Captioning

09/24/2020
by   Daiki Takeuchi, et al.
0

The system we used for Task 6 (Automated Audio Captioning)of the Detection and Classification of Acoustic Scenes and Events(DCASE) 2020 Challenge combines three elements, namely, dataaugmentation, multi-task learning, and post-processing, for audiocaptioning. The system received the highest evaluation scores, butwhich of the individual elements most fully contributed to its perfor-mance has not yet been clarified. Here, to asses their contributions,we first conducted an element-wise ablation study on our systemto estimate to what extent each element is effective. We then con-ducted a detailed module-wise ablation study to further clarify thekey processing modules for improving accuracy. The results showthat data augmentation and post-processing significantly improvethe score in our system. In particular, mix-up data augmentationand beam search in post-processing improve SPIDEr by 0.8 and 1.6points, respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro