Efficient Dialogue State Tracking by Selectively Overwriting Memory

11/10/2019
by   Sungdong Kim, et al.
0

Recent works in dialogue state tracking (DST) focus on an open vocabulary-based setting to resolve scalability and generalization issues of the predefined ontology-based approaches. However, they are computationally inefficient in that they predict the dialogue state at every turn from scratch. In this paper, we consider dialogue state as an explicit fixed-sized memory, and propose a selectively overwriting mechanism for more efficient DST. This mechanism consists of two steps: (1) predicting state operation on each of the memory slots, and (2) overwriting the memory with new values, of which only a few are generated according to the predicted state operations. Moreover, reducing the burden of the decoder by decomposing DST into two sub-tasks and guiding the decoder to focus only one of the tasks enables a more effective training and improvement in the performance. As a result, our proposed SOM-DST (Selectively Overwriting Memory for Dialogue State Tracking) achieves state-of-the-art joint goal accuracy with 51.38 MultiWOZ 2.1 in an open vocabulary-based DST setting. In addition, a massive gap between the current accuracy and the accuracy when ground truth operations are given suggests that improving the performance of state operation prediction is a promising research direction of DST.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro