Efficient Quasi-Geodesics on the Stiefel Manifold

05/14/2021
by   Thomas Bendokat, et al.
0

Solving the so-called geodesic endpoint problem, i.e., finding a geodesic that connects two given points on a manifold, is at the basis of virtually all data processing operations, including averaging, clustering, interpolation and optimization. On the Stiefel manifold of orthonormal frames, this problem is computationally involved. A remedy is to use quasi-geodesics as a replacement for the Riemannian geodesics. Quasi-geodesics feature constant speed and covariant acceleration with constant (but possibly non-zero) norm. For a well-known type of quasi-geodesics, we derive a new representation that is suited for large-scale computations. Moreover, we introduce a new kind of quasi-geodesics that turns out to be much closer to the Riemannian geodesics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro