Efficient Selection Between Hierarchical Cognitive Models: Cross-validation With Variational Bayes

by   Viet-Hung Dao, et al.

Model comparison is the cornerstone of theoretical progress in psychological research. Common practice overwhelmingly relies on tools that evaluate competing models by balancing in-sample descriptive adequacy against model flexibility, with modern approaches advocating the use of marginal likelihood for hierarchical cognitive models. Cross-validation is another popular approach but its implementation has remained out of reach for cognitive models evaluated in a Bayesian hierarchical framework, with the major hurdle being prohibitive computational cost. To address this issue, we develop novel algorithms that make variational Bayes (VB) inference for hierarchical models feasible and computationally efficient for complex cognitive models of substantive theoretical interest. It is well known that VB produces good estimates of the first moments of the parameters which gives good predictive densities estimates. We thus develop a novel VB algorithm with Bayesian prediction as a tool to perform model comparison by cross-validation, which we refer to as CVVB. In particular, the CVVB can be used as a model screening device that quickly identifies bad models. We demonstrate the utility of CVVB by revisiting a classic question in decision making research: what latent components of processing drive the ubiquitous speed-accuracy tradeoff? We demonstrate that CVVB strongly agrees with model comparison via marginal likelihood yet achieves the outcome in much less time. Our approach brings cross-validation within reach of theoretically important psychological models, and makes it feasible to compare much larger families of hierarchically specified cognitive models than has previously been possible.


page 1

page 2

page 3

page 4


Approximate Cross-validated Mean Estimates for Bayesian Hierarchical Regression Models

We introduce a novel procedure for obtaining cross-validated predictive ...

On the marginal likelihood and cross-validation

In Bayesian statistics, the marginal likelihood, also known as the evide...

Convergence of Pseudo-Bayes Factors in Forward and Inverse Regression Problems

In the Bayesian literature on model comparison, Bayes factors play the l...

Bayesian cross-validation of geostatistical models

The problem of validating or criticising models for georeferenced data i...

A Deep Learning Method for Comparing Bayesian Hierarchical Models

Bayesian model comparison (BMC) offers a principled approach for assessi...

Statistical comparison of classifiers through Bayesian hierarchical modelling

Usually one compares the accuracy of two competing classifiers via null ...

Please sign up or login with your details

Forgot password? Click here to reset