Efficient text generation of user-defined topic using generative adversarial networks
This study focused on efficient text generation using generative adversarial networks (GAN). Assuming that the goal is to generate a paragraph of a user-defined topic and sentimental tendency, conventionally the whole network has to be re-trained to obtain new results each time when a user changes the topic. This would be time-consuming and impractical. Therefore, we propose a User-Defined GAN (UD-GAN) with two-level discriminators to solve this problem. The first discriminator aims to guide the generator to learn paragraph-level information and sentence syntactic structure, which is constructed by multiple-LSTMs. The second one copes with higher-level information, such as the user-defined sentiment and topic for text generation. The cosine similarity based on TF-IDF and length penalty are adopted to determine the relevance of the topic. Then, the second discriminator is re-trained with the generator if the topic or sentiment for text generation is modified. The system evaluations are conducted to compare the performance of the proposed method with other GAN-based ones. The objective results showed that the proposed method is capable of generating texts with less time than others and the generated text is related to the user-defined topic and sentiment. We will further investigate the possibility of incorporating more detailed paragraph information such as semantics into text generation to enhance the result.
READ FULL TEXT