Efficient topology optimization using compatibility projection in micromechanical homogenization
The adjoint method allows efficient calculation of the gradient with respect to the design variables of a topology optimization problem. This method is almost exclusively used in combination with traditional Finite-Element-Analysis, whereas Fourier-based solvers have recently shown large efficiency gains for homogenization problems. In this paper, we derive the discrete adjoint method for Fourier-based solvers that employ compatibility projection. We demonstrate the method on the optimization of composite materials and auxetic metamaterials, where void regions are modelled with zero stiffness.
READ FULL TEXT