Efficient URLLC with a Reconfigurable Intelligent Surface and Imperfect Device Tracking
The use of Reconfigurable Intelligent Surfaces (RIS) technology to extend coverage and allow for better control of the wireless environment has been proposed in several use cases, including Ultra-Reliable Low-Latency Communications (URLLC), communications. However, the extremely challenging latency constraint makes explicit channel estimation difficult, so positioning information is often used to configure the RIS and illuminate the receiver device. In this work, we analyze the effect of imperfections in the positioning information on the reliability, deriving an upper bound to the outage probability. We then use this bound to perform power control, efficiently finding the minimum power that respects the URLLC constraints under positioning uncertainty. The optimization is conservative, so that all points respect the URLLC constraints, and the bound is relatively tight, with an optimality gap between 1.5 and 4.5 dB.
READ FULL TEXT