Efficiently Charting RDF

11/27/2018
by   Oren Kalinsky, et al.
0

We propose a visual query language for interactively exploring large-scale knowledge graphs. Starting from an overview, the user explores bar charts through three interactions: class expansion, property expansion, and subject/object expansion. A major challenge faced is performance: a state-of-the-art SPARQL engine may require tens of minutes to compute the multiway join, grouping and counting required to render a bar chart. A promising alternative is to apply approximation through online aggregation, trading precision for performance. However, state-of-the-art online aggregation algorithms such as Wander Join have two limitations for our exploration scenario: (1) a high number of rejected paths slows the convergence of the count estimations, and (2) no unbiased estimator exists for counts under the distinct operator. We thus devise a specialized algorithm for online aggregation that augments Wander Join with exact partial computations to reduce the number of rejected paths encountered, as well as a novel estimator that we prove to be unbiased in the case of the distinct operator. In an experimental study with random interactions exploring two large-scale knowledge graphs, our algorithm shows a clear reduction in error with respect to computation time versus Wander Join.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro