Embedding hypercubes into torus and Cartesian product of paths and cycles for minimizing wirelength
Though embedding problems have been considered for several regular graphs, it is still an open problem for hypercube into torus. In the paper, we prove the conjecture mathematically and obtain the minimum wirelength of embedding for hypercube into Cartesian product of paths and/or cycles. In addition, we explain that Gray code embedding is an optimal strategy in such embedding problems.
READ FULL TEXT