Enable High-resolution, Real-time Ensemble Simulation and Data Assimilation of Flood Inundation using Distributed GPU Parallelization

02/16/2023
by   Junyu Wei, et al.
0

Numerical modeling of the intensity and evolution of flood events are affected by multiple sources of uncertainty such as precipitation and land surface conditions. To quantify and curb these uncertainties, an ensemble-based simulation and data assimilation model for pluvial flood inundation is constructed. The shallow water equation is decoupled in the x and y directions, and the inertial form of the Saint-Venant equation is chosen to realize fast computation. The probability distribution of the input and output factors is described using Monte Carlo samples. Subsequently, a particle filter is incorporated to enable the assimilation of hydrological observations and improve prediction accuracy. To achieve high-resolution, real-time ensemble simulation, heterogeneous computing technologies based on CUDA (compute unified device architecture) and a distributed storage multi-GPU (graphics processing unit) system are used. Multiple optimization skills are employed to ensure the parallel efficiency and scalability of the simulation program. Taking an urban area of Fuzhou, China as an example, a model with a 3-m spatial resolution and 4.0 million units is constructed, and 8 Tesla P100 GPUs are used for the parallel calculation of 96 model instances. Under these settings, the ensemble simulation of a 1-hour hydraulic process takes 2.0 minutes, which achieves a 2680 estimated speedup compared with a single-thread run on CPU. The calculation results indicate that the particle filter method effectively constrains simulation uncertainty while providing the confidence intervals of key hydrological elements such as streamflow, submerged area, and submerged water depth. The presented approaches show promising capabilities in handling the uncertainties in flood modeling as well as enhancing prediction efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset