End-to-end Manipulator Calligraphy Planning via Variational Imitation Learning

04/06/2023
by   fangping-xie, et al.
0

Planning from demonstrations has shown promising results with the advances of deep neural networks. One of the most popular real-world applications is automated handwriting using a robotic manipulator. Classically it is simplified as a two-dimension problem. This representation is suitable for elementary drawings, but it is not sufficient for Japanese calligraphy or complex work of art where the orientation of a pen is part of the user expression. In this study, we focus on automated planning of Japanese calligraphy using a three-dimension representation of the trajectory as well as the rotation of the pen tip, and propose a novel deep imitation learning neural network that learns from expert demonstrations through a combination of images and pose data. The network consists of a combination of variational auto-encoder, bi-directional LSTM, and Multi-Layer Perceptron (MLP). Experiments are conducted in a progressive way, and results demonstrate that the proposed approach is successful in completion of tasks for real-world robots, overcoming the distribution shift problem in imitation learning. The source code and dataset will be public.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset