Energy-Efficient ConvNets Through Approximate Computing
Recently ConvNets or convolutional neural networks (CNN) have come up as state-of-the-art classification and detection algorithms, achieving near-human performance in visual detection. However, ConvNet algorithms are typically very computation and memory intensive. In order to be able to embed ConvNet-based classification into wearable platforms and embedded systems such as smartphones or ubiquitous electronics for the internet-of-things, their energy consumption should be reduced drastically. This paper proposes methods based on approximate computing to reduce energy consumption in state-of-the-art ConvNet accelerators. By combining techniques both at the system- and circuit level, we can gain energy in the systems arithmetic: up to 30x without losing classification accuracy and more than 100x at 99 compared to the commonly used 16-bit fixed point number format.
READ FULL TEXT