Energy-preserving Mixed finite element methods for a ferrofluid flow model
In this paper, we develop a class of mixed finite element methods for the ferrofluid flow model proposed by Shliomis [Soviet Physics JETP, 1972]. We show that the energy stability of the weak solutions to the model is preserved exactly for both the semi- and fully discrete finite element solutions. Furthermore, we prove the existence and uniqueness of the discrete solutions and derive optimal error estimates for both the the semi- and fully discrete schemes. Numerical experiments confirm the theoretical results.
READ FULL TEXT