Enhancing Self-supervised Video Representation Learning via Multi-level Feature Optimization

08/04/2021
by   Rui Qian, et al.
6

The crux of self-supervised video representation learning is to build general features from unlabeled videos. However, most recent works have mainly focused on high-level semantics and neglected lower-level representations and their temporal relationship which are crucial for general video understanding. To address these challenges, this paper proposes a multi-level feature optimization framework to improve the generalization and temporal modeling ability of learned video representations. Concretely, high-level features obtained from naive and prototypical contrastive learning are utilized to build distribution graphs, guiding the process of low-level and mid-level feature learning. We also devise a simple temporal modeling module from multi-level features to enhance motion pattern learning. Experiments demonstrate that multi-level feature optimization with the graph constraint and temporal modeling can greatly improve the representation ability in video understanding.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset