Environment for the Design and Automation of New CDPR Architectures

01/23/2023
by   Josue Rivera, et al.
0

This paper presents a design and automation environment to study the control trajectory for new CDPR architectures, for instance CDPRs with an unusual number of cables or different motor location in the robot frame. In order to test the environment capabilities, an architecture of a planar under-constrained CDPR was designed, simulated, and implemented using standard industrial hardware. Both the simulated model and industrial prototype were running the same trajectories to determine the time delay and the error position between them. The tests have demonstrated that the simulated model of the CDPR reproduces the trajectories of the equivalent industrial prototype with a maximum deviation of 0.35 despite the time delays produced by the data transmission and the non-deterministic communication protocols used to connect the industrial automation controller with the simulated model. The results have shown that the environment is suitable for trajectory control and workspace analysis of new CDPR architectures under different dynamic conditions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset