ERNIE-DOC: The Retrospective Long-Document Modeling Transformer
Transformers are not suited for processing long document input due to its quadratically increasing memory and time consumption. Simply truncating a long document or applying the sparse attention mechanism will incur the context fragmentation problem or inferior modeling capability with comparable model size. In this paper, we propose ERNIE-DOC, a document-level language pretraining model based on Recurrence Transformers. Two well-designed techniques, namely the retrospective feed mechanism and the enhanced recurrence mechanism enable ERNIE-DOC with much longer effective context length to capture the contextual information of a whole document. We pretrain ERNIE-DOC to explicitly learn the relationship among segments with an additional document-aware segment reordering objective. Various experiments on both English and Chinese document-level tasks are conducted. ERNIE-DOC achieves SOTA language modeling result of 16.8 ppl on WikiText-103 and outperforms competitive pretraining models on most language understanding tasks such as text classification, question answering by a large margin.
READ FULL TEXT