Error estimates for general non-linear Cahn-Hilliard equations on evolving surfaces

06/03/2020
by   Cedric Aaron Beschle, et al.
0

In this paper, we consider the Cahn-Hilliard equation on evolving surfaces with prescribed velocity and a general non-linear potential. High-order evolving surface finite elements are used to discretise the weak equation system in space, and a modified matrix-vector formulation for the semi-discrete problem is derived. The anti-symmetric structure of the weak equation system is preserved by the matrix-vector formulation and it is utilised to prove optimal-order and uniform-in-time error estimates. An extension of the convergence results is given for general non-linear Cahn-Hilliard equations on evolving surfaces. The paper is concluded by a variety of numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro