Estimating productivity gains in digital automation

10/03/2022
by   Mauricio Jacobo Romero, et al.
0

This paper proposes a novel productivity estimation model to evaluate the effects of adopting Artificial Intelligence (AI) components in a production chain. Our model provides evidence to address the "AI's" Solow's Paradox. We provide (i) theoretical and empirical evidence to explain Solow's dichotomy; (ii) a data-driven model to estimate and asses productivity variations; (iii) a methodology underpinned on process mining datasets to determine the business process, BP, and productivity; (iv) a set of computer simulation parameters; (v) and empirical analysis on labour-distribution. These provide data on why we consider AI Solow's paradox a consequence of metric mismeasurement.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro