Estimation and Inference of Extremal Quantile Treatment Effects for Heavy-Tailed Distributions
Causal inference for extreme events has many potential applications in fields such as medicine, climate science and finance. We study the extremal quantile treatment effect of a binary treatment on a continuous, heavy-tailed outcome. Existing methods are limited to the case where the quantile of interest is within the range of the observations. For applications in risk assessment, however, the most relevant cases relate to extremal quantiles that go beyond the data range. We introduce an estimator of the extremal quantile treatment effect that relies on asymptotic tail approximations and uses a new causal Hill estimator for the extreme value indices of potential outcome distributions. We establish asymptotic normality of the estimators even in the setting of extremal quantiles, and we propose a consistent variance estimator to achieve valid statistical inference. In simulation studies we illustrate the advantages of our methodology over competitors, and we apply it to a real data set.
READ FULL TEXT