Evolving Multi-Resolution Pooling CNN for Monaural Singing Voice Separation

08/03/2020
by   Weitao Yuan, et al.
0

Monaural Singing Voice Separation (MSVS) is a challenging task and has been studied for decades. Deep neural networks (DNNs) are the current state-of-the-art methods for MSVS. However, the existing DNNs are often designed manually, which is time-consuming and error-prone. In addition, the network architectures are usually pre-defined, and not adapted to the training data. To address these issues, we introduce a Neural Architecture Search (NAS) method to the structure design of DNNs for MSVS. Specifically, we propose a new multi-resolution Convolutional Neural Network (CNN) framework for MSVS namely Multi-Resolution Pooling CNN (MRP-CNN), which uses various-size pooling operators to extract multi-resolution features. Based on the NAS, we then develop an evolving framework namely Evolving MRP-CNN (E-MRP-CNN), by automatically searching the effective MRP-CNN structures using genetic algorithms, optimized in terms of a single-objective considering only separation performance, or multi-objective considering both the separation performance and the model complexity. The multi-objective E-MRP-CNN gives a set of Pareto-optimal solutions, each providing a trade-off between separation performance and model complexity. Quantitative and qualitative evaluations on the MIR-1K and DSD100 datasets are used to demonstrate the advantages of the proposed framework over several recent baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset