Experiments on Generalizability of BERTopic on Multi-Domain Short Text

12/16/2022
by   Muriël de Groot, et al.
0

Topic modeling is widely used for analytically evaluating large collections of textual data. One of the most popular topic techniques is Latent Dirichlet Allocation (LDA), which is flexible and adaptive, but not optimal for e.g. short texts from various domains. We explore how the state-of-the-art BERTopic algorithm performs on short multi-domain text and find that it generalizes better than LDA in terms of topic coherence and diversity. We further analyze the performance of the HDBSCAN clustering algorithm utilized by BERTopic and find that it classifies a majority of the documents as outliers. This crucial, yet overseen problem excludes too many documents from further analysis. When we replace HDBSCAN with k-Means, we achieve similar performance, but without outliers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset