Explainability Auditing for Intelligent Systems: A Rationale for Multi-Disciplinary Perspectives
National and international guidelines for trustworthy artificial intelligence (AI) consider explainability to be a central facet of trustworthy systems. This paper outlines a multi-disciplinary rationale for explainability auditing. Specifically, we propose that explainability auditing can ensure the quality of explainability of systems in applied contexts and can be the basis for certification as a means to communicate whether systems meet certain explainability standards and requirements. Moreover, we emphasize that explainability auditing needs to take a multi-disciplinary perspective, and we provide an overview of four perspectives (technical, psychological, ethical, legal) and their respective benefits with respect to explainability auditing.
READ FULL TEXT