Exploiting deterministic algorithms to perform global sensitivity analysis for continuous-time Markov chain compartmental models with application to epidemiology

02/15/2022
by   Henri Mermoz Kouye, et al.
0

In this paper, we develop an approach of global sensitivity analysis for compartmental models based on continuous-time Markov chains. We propose to measure the sensitivity of quantities of interest by representing the Markov chain as a deterministic function of the uncertain parameters and a random variable with known distribution modeling intrinsic randomness. This representation is exact and does not rely on meta-modeling. An application to a SARS-CoV-2 epidemic model is included to illustrate the practical impact of our approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro