Explore-Before-Talk: Multichannel Selection Diversity for Uplink Transmissions in Machine-Type Communication

10/28/2020
by   Jinho Choi, et al.
0

Improving the data rate of machine-type communication (MTC) is essential in supporting emerging Internet of things (IoT) applications ranging from real-time surveillance to edge machine learning. To this end, in this paper we propose a resource allocation approach for uplink transmissions within a random access procedure in MTC by exploiting multichannel selection diversity, coined explore-before-talk (EBT). Each user in EBT first sends pilot signals through multiple channels that are initially allocated by a base station (BS) for exploration, and then the BS informs a subset of initially allocated channels that are associated with high signal-to-noise ratios (SNRs) for data packet transmission by the user while releasing the rest of the channels for other users. Consequently, EBT exploits a multichannel selection diversity gain during data packet transmission, at the cost of exploration during pilot transmission. We optimize this exploration-exploitation trade-off, by deriving closed-form mean data rate and resource outage probability expressions. Numerical results corroborate that EBT achieves a higher mean data rate while satisfying the same outage constraint, compared to a conventional MTC protocol without exploration.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro