ExplorerTree: a focus+context exploration approach for 2D embeddings

06/20/2021
by   Wilson E. Marcílio-Jr, et al.
0

In exploratory tasks involving high-dimensional datasets, dimensionality reduction (DR) techniques help analysts to discover patterns and other useful information. Although scatter plot representations of DR results allow for cluster identification and similarity analysis, such a visual metaphor presents problems when the number of instances of the dataset increases, resulting in cluttered visualizations. In this work, we propose a scatter plot-based multilevel approach to display DR results and address clutter-related problems when visualizing large datasets, together with the definition of a methodology to use focus+context interaction on non-hierarchical embeddings. The proposed technique, called ExplorerTree, uses a sampling selection technique on scatter plots to reduce visual clutter and guide users through exploratory tasks. We demonstrate ExplorerTree's effectiveness through a use case, where we visually explore activation images of the convolutional layers of a neural network. Finally, we also conducted a user experiment to evaluate ExplorerTree's ability to convey embedding structures using different sampling strategies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset