Exploring High-Dimensional Structure via Axis-Aligned Decomposition of Linear Projections

by   Jayaraman J. Thiagarajan, et al.

Two-dimensional embeddings remain the dominant approach to visualize high dimensional data. The choice of embeddings ranges from highly non-linear ones, which can capture complex relationships but are difficult to interpret quantitatively, to axis-aligned projections, which are easy to interpret but are limited to bivariate relationships. Linear project can be considered as a compromise between complexity and interpretability, as they allow explicit axes labels, yet provide significantly more degrees of freedom compared to axis-aligned projections. Nevertheless, interpreting the axes directions, which are linear combinations often with many non-trivial components, remains difficult. To address this problem we introduce a structure aware decomposition of (multiple) linear projections into sparse sets of axis aligned projections, which jointly capture all information of the original linear ones. In particular, we use tools from Dempster-Shafer theory to formally define how relevant a given axis aligned project is to explain the neighborhood relations displayed in some linear projection. Furthermore, we introduce a new approach to discover a diverse set of high quality linear projections and show that in practice the information of k linear projections is often jointly encoded in ∼ k axis aligned plots. We have integrated these ideas into an interactive visualization system that allows users to jointly browse both linear projections and their axis aligned representatives. Using a number of case studies we show how the resulting plots lead to more intuitive visualizations and new insight.


page 1

page 2

page 3

page 4


Subspace Determination through Local Intrinsic Dimensional Decomposition: Theory and Experimentation

Axis-aligned subspace clustering generally entails searching through eno...

A slice tour for finding hollowness in high-dimensional data

Taking projections of high-dimensional data is a common analytical and v...

Function Preserving Projection for Scalable Exploration of High-Dimensional Data

We present function preserving projections (FPP), a scalable linear proj...

Sharp-SSL: Selective high-dimensional axis-aligned random projections for semi-supervised learning

We propose a new method for high-dimensional semi-supervised learning pr...

Casting Multiple Shadows: High-Dimensional Interactive Data Visualisation with Tours and Embeddings

Non-linear dimensionality reduction (NLDR) methods such as t-distributed...

On the Dispersion of Sparse Grids

For any natural number d and positive number ε, we present a point set i...

Random Tessellation Forests

Space partitioning methods such as random forests and the Mondrian proce...

Please sign up or login with your details

Forgot password? Click here to reset