Express Wavenet – a low parameter optical neural network with random shift wavelet pattern

01/06/2020
by   Yingshi Chen, et al.
0

Express Wavenet is an improved optical diffractive neural network. At each layer, it uses wavelet-like pattern to modulate the phase of optical waves. For input image with n2 pixels, express wavenet reduce parameter number from O(n2) to O(n). Only need one percent of the parameters, and the accuracy is still very high. In the MNIST dataset, it only needs 1229 parameters to get accuracy of 92 shift wavelets show the characteristics of optical network more vividly. Especially the vanishing gradient phenomenon in the training process. We present a modified expressway structure for this problem. Experiments verified the effect of random shift wavelet and expressway structure. Our work shows optical diffractive network would use much fewer parameters than other neural networks. The source codes are available at https://github.com/closest-git/ONNet.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset