Extending the Relative Seriality Formalism for Interpretable Deep Learning of Normal Tissue Complication Probability Models

11/25/2021
by   Tahir I. Yusufaly, et al.
0

We formally demonstrate that the relative seriality model of Kallman, et al. maps exactly onto a simple type of convolutional neural network. This approach leads to a natural interpretation of feedforward connections in the convolutional layer and stacked intermediate pooling layers in terms of bystander effects and hierarchical tissue organization, respectively. These results serve as proof-of-principle for radiobiologically interpretable deep learning of normal tissue complication probability using large-scale imaging and dosimetry datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro