Facetize: An Interactive Tool for Cleaning and Transforming Datasets for Facilitating Exploratory Search

12/27/2018
by   Anna Kokolaki, et al.
0

There is a plethora of datasets in various formats which are usually stored in files, hosted in catalogs, or accessed through SPARQL endpoints. In most cases, these datasets cannot be straightforwardly explored by end users, for satisfying recall-oriented information needs. To fill this gap, in this paper we present the design and implementation of Facetize, an editor that allows users to transform (in an interactive manner) datasets, either static (i.e. stored in files), or dynamic (i.e. being the results of SPARQL queries), to datasets that can be directly explored effectively by themselves or other users. The latter (exploration) is achieved through the familiar interaction paradigm of Faceted Search (and Preference-enriched Faceted Search). Specifically in this paper we describe the requirements, we introduce the required set of transformations, and then we detail the functionality and the implementation of the editor Facetize that realizes these transformations. The supported operations cover a wide range of tasks (selection, visibility, deletions, edits, definition of hierarchies, intervals, derived attributes, and others) and Facetize enables the user to carry them out in a user-friendly and guided manner, without presupposing any technical background (regarding data representation or query languages). Finally we present the results of an evaluation with users. To the best of your knowledge, this is the first editor for this kind of tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset